[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2125)

15318

B. Tech 7th Semester Examination CMOS & VLSI Design (NS) EC-415

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Attempt any one question:

- (a) Explain VLSI design flow with flowchart describing various steps used in design process.
 - (b) Explain in detail the Gate Array and Standard Cell based VLSI design. (20)

OR

- (a) Derive the expression of drain current of NMOS transistor using gradual channel approximation.
 - (b) For CMOS inverter derive expression of V_{IH} . Determine NMH for symmetric operation. (20)

Attempt any one question:

- 3. (a) Describe with equations the extraction of parasitic capacitance of MOS transistor and interconnect.
 - (b) Implement $f = \overline{(A + B + D) (C + E)}$ using static CMOS logic. Determine the W/L ratio of each MOSFET so that V_{OL} is always less than or equal to CMOS inverter. Draw the stick diagram. (20)

OR [P.T.O.]

2 15318

- 4. (a) Discuss cascading and charge sharing problem of basic dynamic CMOS logic. Implement the function $f = (\overline{A} + \overline{B} + \overline{D}) (\overline{C} + \overline{E}) \text{ using domino CMOS logic.}$
 - (b) Define rise time, fall time and τ_{PLH} of inverter. Obtain equation of delay τ_{PHL} for CMOS inverter driving load CL. (20)

Attempt any one question:

- 5. (a) Draw stick diagram and complete layout representing all layer for 2x1 multiplexer using CMOS logic.
 - (b) Design 3-bit carry look-ahead adder and realize with dynamic CMOS logic. (20)

OR

- 6. (a) What is the Latch up problem that arises in CMOS' technology? Explain with analysis. How is it overcome?
 - (b) Draw circuit of 2 phase clock generator. Draw stick diagram and explain operation of 4-bit dynamic shift register.

Attempt any one question:

- 7. (a) Draw logic diagram of CLB of FPGA having 4 input LUTs and describe its operation.
 - (b) Implement following Boolean functions using PAL and PLA:

f1(A, B, C, D) =
$$\Sigma$$
m(0, 2, 6, 7, 8, 9, 12, 13, 14)
f2(A, B, C, D) = Σ m(2, 3, 8, 9, 10, 12, 13) (20)

OR

15318

8. (a) What is the purpose of programmable interconnects?

Describe array based and switch box based programmable wiring.

3

 (b) Explain difference between Sea-Of-Gate and standard cell. Draw layout of 2-input CMOS NOR gate using both approach. (20)

Attempt all questions:

- 9. (i) Write the threshold voltage equation for PMOS with body bias. Define parameters used in the equation.
 - (ii) List the parasitic capacitances of MOS device. Are they constant? Why?
 - (iii) Plot CMOS inverter transfer characteristics showing various region and status (off, triode or saturation) of PMOS and NMOS transistors in each region.
 - (iv) Draw CMOS domino logic for realizing 3-input NOR gate.
 - (v) Show the structure of 12-bit carry-bypass adder having 3 bypass stages.
 - (vi) What are the factors that cause static power dissipation in the CMOS circuit?
 - (vii) Draw NAND based CMOS SR latch.
 - (viii) Distinguish between FPGA and CPLD.
 - (ix) NMOS transistor has gate, drain and threshold voltages as V_G=3V, V_S=1.5V and V_T=0.7V. Neglecting body effect, determine its region of operation if (i) V_D=2V (ii)V_D=2.5V.
 - (x) Realize 2-input NAND gate with CMOS logic.

 $(2 \times 10 = 20)$